
978-1-5090-3707-0/16/$31.00 c©2016 IEEE

AUTOMATIC FRAMEWORK TO GENERATE RECONFIGURABLE
ACCELERATORS FOR OPTION PRICING APPLICATIONS

Nam Khanh Pham1,2, Khin Mi Mi Aung2, Akash Kumar3

1Department of Electrical and Computer Engineering, National University of Singapore, Singapore
2Data Storage Institute, A*STAR, Singapore

3 TU Dresden, Center for Advancing Electronics Dresden (cfaed), Germany
phamnamkhanh@u.nus.edu

Mi Mi AUNG@dsi.a-star.edu.sg
akash.kumar@tu-dresden.de

Abstract—Option Pricing is a fundamental application in
most financial institutions dealing with derivative market. It
frequently requires huge computational effort and low latency
demand. Therefore, a number of different Option Pricing im-
plementations have been developed on FPGA-based platform.
However, none of the existing works cover more than one
models or different types of options, which yields problem
of productively implementing several hardware accelerators
for different models. To fill in the gap, we propose a design
flow for generating efficient hardware accelerators for option
pricing applications with different models and option types.
The framework boosts the designers productivity and enables
quick prototyping on FPGA platform by providing general
template architecture for option pricing applications. The
architecture comes along with a prebuilt design library, which
covers a wide range of popular financial models. Experimental
results for four models show that the accelerators generated
from our design flow outperform their counterpart software
implementation with two order of magnitude speedup. While
comparing with existing hardware designs for the same models,
our framework can produce the accelerators that overcome
most of manual designed engines.

I. INTRODUCTION

Option trading is the fundamental operation of every

financial institution; therefore, evaluating the option accu-

rately and fairly is essential for the business of these financial

company and their customers [11]. However, the appearance

of highly complex options, which involve multiple under-

lying assets or contains complicated contractual features,

makes the pricing problem a very challenge task. Besides,

new underlying models for describing the stock prices have

been added more and more features to better reflect the

real behavior of the market. All of these complexities make

the option pricing problems computationally intensive. The

low latency demand is another important factor that drives

financial firms accelerate their pricing process. In the era

of automated trading, the prices of the financial products

change within a small fraction of second. In this competitive

environment, faster and more accurate pricing can bring a

huge advantage and profit for financial firms. Therefore, high

performance computing needs to be exploited to support real

time pricing [25].

Amongst other options for high performance computing

in finance like GPU or CPU cluster, FPGA has proven itself

as a promising candidate for option pricing application due

to the following features. First of all, FPGA accelerators can

exploit different levels of parallelism inherent in the pricing

methods: from instruction level, thread level to data level

with pipeline parallelism [17]. Moreover, they can provide

the same performance with much less power, size and cost

in comparison with commodity CPU [17]. Last but not least,

the potential on low latency network interface for updating

market information and trading decision brings the unique

advantage for FPGA implementation.

Because of its high potential and advantages, FPGA

has been intensively studied over the last few years to

accelerate the option pricing problem. Although a number

of hardware (HW) implementations for option pricing have

been reported with huge speedup and lots of energy saving

[20], the productivity is still a challenge when it comes

to FPGA design as compared to GPU and CPU [14].

Most existing works proposed the hardware designs for one

particular pricing model only: either Black Scholes [19–21]

or Heston [5, 6, 8, 9]. Because the computational features/

characteristics of pricing models are different in nature,

when users need to switch between different models, the

designers have to restart the design process from beginning,

which consumes lots of time and effort. To address this

problem, we introduce a generic framework that can help

designers to generate efficient and high quality hardware

accelerators, which can facilitate different pricing models as

well as various types of options. Following are the main

Contributions of our framework:

• A generic design flow that can automatically optimize

and generate the hardware accelerators from a high

level description of option pricing application;

• A template of modular and parameterizable hardware

architecture that covers all different computational fea-

tures of various pricing models;

• A library for the hardware implementation of most

popular pricing models: Black Scholes; Merton; Heston

and Bates;

• A heuristic to find optimization parameters for above-

mentioned hardware designs;

The rest of the paper is organized as follows. In Section

2, an overview of option pricing application and underlying

models are provided. Section 3 highlights existing works

related to hardware implementation of the option pricing.

The proposed design flow and the heuristic for optimizing

design parameters are detailed in Section 4. The generic

hardware architecture is described in Section 5. Section 6

discusses the experimental setup and the results. Finally,

summary and future plans are concluded in Section 7.

II. BACKGROUND

A. Option overview

Option is a contract between two parties that provide the

buyer the right to execute a transaction on one or several

underlying assets (stock, currency, index or debt) with a

strike price K at a future moment T (maturity or expiry)

under specific conditions. An option is a Call Option if

the buyer has the right to buy in the future; whereas an

Option with the right to sell is called Put Option. The profit

from Option at maturity is defined by the payoff, which

depends on the exercise condition, the Strike price K and

the underlying asset price at maturity T . Our framework can

be applied to a wide range of European options, which are

executed only at Expiry. Based on the definition in [11], the

following Option Type are implemented in our framework:

• Vanilla Option: the most popular and traditional type

of option, the payoff condition depends on the strike

price K, and the stock price at Expiry;

• Asian Option: the Strike price is defined as the arith-

metic average of the underlying asset price during the

contract period;

• Barrier Option: the payoff condition is defined by

whether its underlying assets price achieves specific

values.

• Binary Option: Binary options are options with discon-

tinuous payoffs. A simple example of a binary option

is a cash-or-nothing call. This pays off nothing if the

asset price ends up below the strike price at time T and

pays a fixed amount, Q, if it ends up above the strike

price.

• Lookback Option: The payoffs from lookback options

depend on the maximum or minimum asset price

reached during the life of the option.

B. Option pricing problem

Options are one of the most widely traded products in the

market [11]. Therefore, financial institutions need to define

the fair option price to avoid the arbitration opportunity from

their competitors. The typical option pricing procedure is

illustrated in Figure 1.
First of all, the evolvement of the underlying asset price

needs to be described through a model. Based on the model

Current time Expiry
t=Tt=0

Payoff
conditions

S0 ST

CTC0

Model of stock price

Discount formula

Black-Scholes model

Heston modelMerton model

Bates model

Figure 1. Option pricing procedure

and current assets price S0, the price at maturity ST can

be calculated. After that, the option price at maturity CT is

computed using payoff function. Finally, the future option

price CT is discounted to get the current option price C0.

From the pricing process, we can recognize the ultimate

importance of the underlying asset price model. The most

popular and widely used models are Black-Scholes model,

Merton model, Heston model and Bates model [11].

1) Black-Scholes model: Black-Scholes (BS) model has

been introduced in 1973 and widely adopted by financial

institution for option pricing problem [11]. In this model,

Black and Scholes use perfect market hypothesis to assume

that all the known information of market has been included

in the prices of traded asset. Therefore, the asset price fol-

lows a Brownian motion with constant drift μ and volatility

σ:
dSt

St
= μdt+ σdWt (1)

where Wt is the Wiener random process, which is in the

order of N(0, T), a Gaussian distribution with T as standard

deviation.
dWt = Wt −W0 ≈ N(0, T) (2)

2) Heston model: One disadvantage of the BS model

is the assumption that the volatility is always constant.

This assumption does not reflect the properties of real

market and may introduce discrepancy between computed

option price and real price. Therefore, Steven L. Heston

introduced the stochastic volatility to improve the Black-

Scholes model. This improvement described the stock price

behavior much more accurately and the model is widely

accepted in financial community [11]. The Heston model

has two stochastic differential equations which describe the

randomness in both the asset price S and volatility V :

dSt

St
= μdt+

√
vtdW

1
t (3)

dvt = κ(θ − vt)dt+ σ
√
vtdW

2
t (4)

Here, W 1 and W 2 are two Brownian motions with the

correlation ρ that model the randomness of the market. t is

the time, and the other parameters further specify the specific

behavior of the financial market.

3) Merton model: Another way to bring the BS model

closer to the real market is to include a Jump component to

the diffusion process of the stock price. That was proposed

by Merton [13], and the formula is described in Equation 5.

dSt

St
= μdt+ σdWt + dZt (5)

where dZt describes the Jump component and usually fol-

lows a Poison process.

4) Bates model: Bates introduced a new model which

contains both the features of stochastic volatility and jump

process in 1996 [3]. The asset price is then described in

Equation 6 and 7.

dSt

St
= μdt+

√
vtdW

1
t + dZt (6)

dvt = κ(θ − vt)dt+ σ
√
vtdW

2
t (7)

C. Pricing methods

From these models we can have several choices to define

the dependency of the Option price on the Stock price S, the

volatility V and the time T . The way that we describe this

relationship also defines the numerical method used to price

the option. First of all, the stochastic differential equations

(SDE) are the most straight forward way to describe the

abovementioned dependencies. For numerical computation,

there are several options to derive the option price, namely:

Monte-Carlo (MC) Simulation, Finite Different methods,

Binomial tree and Quadrature Method. Among them, MC is

the most widely used methods because of its simplicity and

generality: it can be applied to almost all option types as well

as underlying stock models [10]. Therefore, our framework

focuses on the hardware accelerators for the Monte-Carlo

method in option pricing applications.

III. RELATED WORK

Because of its potential and relevance, FPGA is exten-

sively studied for improving the performance of option

pricing applications.

A. Black Scholes Model

The earliest works on FPGA-based accelerators for option

pricing were dedicated to the traditional Black Scholes

models. Being one of the active academic group focused on

this problem, Xiang Tian et al. developed their first option

pricing accelerator on Maxwell platform, which achieves

340 times speedup over 2.66 GHz Intel Pentium IV software

implementation [19]. Their later design on Quasi Monte

Carlo pricing engine has 544 times speedup over Intel Xeon

CPU and more than 10 times over NVIDIA 8800GTX GPU

[20]. Another research group which is very active in this area

is Custom Computing group from Imperial College London.

Tse et al. introduced the FPGA implementation for exotic

option that outperforms the CPU 313 times and 2.2 times

faster than Tesla C1060 GPU implementation [23]. A mixed-

precision approach has been proposed by Gary et al. for

accelerating MC simulation in [7]; as a result, pricing the

Asian option can be shortened by 44 times using FPGA

Virtex-6.

B. Heston Model

Heston model is the second most popular pricing model

that has been adopted in the hardware community. The

pioneer FPGA design by Schryver et al. [8] can achieve 35%

speed of the Tesla C2050 GPU implementation with only

40% energy consumption. The same authors have reported

a better design for Multi Level Monte Carlo (MLMC)

method with Barrier Option in [9]. Extending previous

works, Brugger et.al. proposed a framework for mixed-

precision design for accelerating MLMC pricing method in

[6] and a hardware implementation on Zynq platform that

is 12.5 times faster and 153 times more power efficient than

previous design [5].

Our work is different from above-mentioned designs in the

fact that our framework can be used to generate the pricing

engines for multiple different pricing models and option

types, while previous works introduced the architectures

applicable for one particular pricing model only.

C. Framework

The closest work to our contribution is the one proposed

by Thomas et al. in [18]. The authors have developed a

methodology to automatically generate reconfigurable hard-

ware for Monte Carlo simulation in financial applications.

The hardware accelerators from the design flow can achieve

an average of 87 times speedup compared with software

implementation on 2.66GHz Pentium IV. Our framework

fundamentally differentiates from previous one in 2 ways.

First, we focus closely on the option pricing applications;

hence, our proposed generic hardware architecture are care-

fully customized to the computational characteristics of the

pricing problem. This customization brings advantages in

both the development time as well as the performance of the

generated accelerators. Second, we integrate an optimization

process to derive the most efficient design parameters for the

hardware accelerators.

IV. DESIGN FLOW AND OPTIMIZATION FRAMEWORK

In this section, we propose a generic design flow that can

generate efficient accelerators for different types of options

and all the models mentioned-above. Besides, a framework

that can be used to optimize the engine parameters according

to different design constraints is also developed to shorten

the development process. Our proposed design is illustrated

in Figure 2. The input of the design flow is a specification of

an option pricing query which includes all the information

needed for generating the HW accelerator and obtaining the

+ Option Type Paras
+ Model Paras
+ Option Paras
+ Jump Paras
+ SV Paras
+ Design Constraints

Analysis and Optimization
Module

Automatic HW Generation

VHDL implementation

HW Library for all pricing
models

Engine parameters

Control
Paths

Data Paths
(Arithmetic
operations)

Control
Class

Data
Flow

MaxIDE

Engine
Parameters

Bates Engine

Heston Engine

Merton Engine

Black- Scholes Engine

Specification
XML

K, S, sigma, mu

Optimal Engine

Optimal
Engine Paras

(Parameterizable)
Generic Interface

Engine ParasConstraints

Option Paras
Jump Paras

SV Paras

Figure 2. Generic framework

option price. The specification is written in XML file and

contains following details about the pricing request:

• Option Type Parameters: Vanilla, Asian, Barrier, Binary

or Lookback;

• Model Parameters: Black Scholes, Merton, Heston or

Bates;

• Option Parameters (general variables for all types of

option): Strike price K, current stock value S0, volatility

σ, mean of expected return μ, number of time steps,

number of paths, maturity T;

• Jump Parameters: jump rate λ, jump mean α, jump

deviation β ;

• Stochastic Volatility (SV) Parameters: reversion rate κ,

Variance of volatility ξ, long term variance θ, correla-

tion coefficient ρ ;

• User constraints: timing constraint, precision constraint

or HW resource constraint.

The first main block of the framework is the Analysis

and Optimization Module (AOM). Basically, this module

considers the Option Type and Option Model, analyzes

the Design Constraints and generates the optimal Engine

Parameters for the next block. The essence of AOM is an

optimization algorithm which is a heuristic search algorithm

that intelligently traverses the design space to find the most

efficient design point. The design space is given by all

the available set of Engine Parameters such as: number of

bits for exponential (e) and mantissa (m) of floating point

representation; number of hardware instances pipes and the

frequency of the Hardware F . The procedure is described

in Algorithm 1. The input of the Algorithm is the design

constraints given by the designer in the Specification of

pricing request. The constraints might contain requirement

of the error ε, the available hardware resource HW , and

the timing condition, which is translated to throughput

requirement tp. Taking into account the input, the heuristic

produces the most efficient engine Eopt configuration, which

is represented as a tuple of number representation (m, e),
number of HW instances pipes, and the operating frequency

F . Using profiling method, the Algorithm first defines the

number representation (m0 = 41, e0 = 7), which satisfied

the error requirement ε = 5% . Then, it synthesizes the

smallest configuration E0 = {(m0, e0), pipes = 1, F =
100} to obtain the HW usage of 1 instance with standard

frequency F = 100MHz. The flag of successfully finding

the optimal configuration is set to False in line 3. The

maximal frequency that makes the minimal configuration

with 1 HW instance satisfy the throughput requirement is

assigned in line 4. The upper bound of the number of HW

instance implemented is set in line 5. The next FOR loop

iterates through possible number of HW instances (Line 6),

computes the minimal operating frequency (Line 7), and

checks if the minimum configuration for that number of HW

instance is feasible to implement on FPGA (line 8). If the

minimal configuration is not feasible, the loop reduces the

number of HW instances (Line 21). Otherwise, it indicates

that an available configuration found (Line 11) and continues

searching for the maximal frequency using binary search (the

While loop). At the current state, the heuristic search is quite

simple and require synthesis tool to check the feasibility of

the design. In future, a hardware utilization model along with

a performance model can be integrated for faster evaluation

and facilitate more advance optimization algorithms.

The output of the AOM is the most efficient value of

Engine Parameters which are passed to the Automatic HW

Generation (AHG) block. This block uses these Engine

Parameters to configure the available HW modules in the

HW library, combine these modules into a complete engine

and generate the VHDL file for the engine.

To better understand the mechanism of the framework

and the functionality of each module , an overview of the

general architecture of the pricing engines is provided in

the next Section. As presented in Figure 2, the HW library

contains the architecture of 4 pricing engines associated with

abovementioned 4 pricing models. Each pricing engine has

two main parts: control path and data path. The data paths

mainly contain arithmetic operations and will dominate the

HW consumption as well as the latency of each engine.

The control paths are used to manage the data transfer

and synchronization between data path modules. Both the

Algorithm 1 Finding the most efficient Engine Parameters
Input: Design constraint: HW, tp, ε
Output: Most efficient Engine Parameters : E = {(m, e), pipes, F}
1: Profiling to get the number representation (m0, e0) satisfied the accuracy ε
2: Synthesize the minimal HW configuration with: E0 = {(m0, e0), pipes =

1, F = 100} to get the results HW0

3: available = FALSE
4: Fmax = tp
5: max pipes = HW/HW0

6: for i = max pipes to 1 do
7: Fmin = tp/i
8: if synthesize(Ei = {(m0, e0), pipes = i, F = Fmin}) = feasible then
9: pipesopt = i

10: Fopt = Fmin

11: available = TRUE
12: while (Fmax > Fmin + 1) do
13: if synthesize(Ei = {(m0, e0), pipes = i, F = Fmax}) =

feasible then
14: Fopt = Fmax

15: Break
16: else
17: Fmax = (Fmax + Fmin)/2
18: end if
19: end while
20: else
21: Next
22: end if
23: end for
24: if available=TRUE then
25: Return E = {(m, e), pipesopt, Fopt}
26: else
27: Print(”there is no configuration satisfied the constraint”)
28: end if

control paths and data paths are designed with a focus on

flexibility and modularization, that means these modules

contain some features that can be parameterized with the

Engine Parameters. In the data paths, these features will be

the constant and the user defined type, while in the control

path the I/O enable signals and the routing signals between

blocks are customizable.

V. PRICING ENGINE ARCHITECTURE

This section provides the implementation details and

architecture of the generic pricing engine mentioned above.

First we review the procedure of MC simulation applied to

pricing problem with different models; then design of the

HW accelerator for MC pricing method is developed with

parameterizable functionality in mind.

A. MC method overview
MC method is a numerical method that is widely used

to simulate stochastic processes. The essence of the method

is based on the procedure of sampling underlying random

variables, then computing the outcome of the process and

setting the average of all simulated outcomes as the required

value. The MC simulation method is intensively used for

option pricing problems because it is robust and stable; it

can be used to derive options without closed form formula

and the complexity of the method does not increase expo-

nentially with the dimension of underlying assets. Therefore,

this method is a promising candidate for high performance

computing accelerator. Moreover, the independence between

simulated paths makes it more attractive for parallel com-

puting systems like FPGAs and GPUs.

The procedure of MC method can be described as follows:

firstly, the pricing period is discretized into small time steps

δt; then, the continuous stochastics differential equations

(SDE) of the pricing model is translated into discrete version

to describe the change of the asset price and volatility in one

time step. After that, all the random movements of price

and volatility within period [0, T] are accumulated to get

the asset price for one simulation path. The option price

for each path at time T is computed using payoff function.

Then, the expected option price at time T is defined as the

average of all simulated option prices. Finally, the current

price for the option is discounted from its price in time T .

B. HW design of MC engine

The HW architecture of the MC engine is presented in

Figure 3 and closely follows the procedure described in

the previous Section. The blocks inside the dotted rectangle

Point are responsible for computing the movement of stock

price for each time step, while the Payoff Core is only

executed at the last time step to compute the final price of a

Path (outer dotted rectangle). In other words, the Point Rect-

angle is the inner most loop iterating through all the time

steps, while the Path Rectangle is the outer loop iterating

through all the simulated paths. The Coeff. Precomputation

block is implemented in the highest hierarchal level and

executed only once at the beginning of pricing procedure.

As suggested by its name, this block precomputes all the

constant parameters during the pricing process, so that they

are not redundantly recomputed in the inside process. As

can be seen in Figure 3, there are two types of input

parameters: the Model Parameters and Option Parameters

(red color) are configuration inputs, which are used by the

HW Generator Block to define appropriate architecture that

needs to be loaded. The Model Parameters determine which

HW modules from library need to be configured in the

Coeff. Precomputation block, Variance Core and Price Core.

Based on the type of underlying models, they also decide

whether or not to include the Possion Generator and Jump

Generator in the design, and how many Gaussian Number

Generators (GNG) need to be implemented. Having smaller

impact on the design, the Option Type Parameters decide the

configuration need to be loaded in the Existence Core and

Payoff Core. In contrast to Model Parameters and Option

Parameters, the rest of the inputs (Jump Paras, SV Paras,

Option Paras) are presented in black color and affect only the

execution phase when a particular pricing engine is already

loaded into the FPGA. These parameters are fed as input

data to relevant modules of the configured pricing engine to

produce appropriate output results during execution.

As can be observed from Figure 3, the overall architecture

of the pricing engine is developed in a highly modular

fashion so that it can accommodate various types of option

and underlying models. The functionality of each block is

described in detail as follows:

Path

Coeff.
Precomputation

RNGs

Variance Core

Existence Core

Payoff Core

Accumulate Price

Final Result

Model
Paras

Price Core

Possion
Generator

Jump
Generator

Jump
Paras

SV
Paras

Option
Paras

Point

Option
Type Paras

Loop back

Figure 3. Generic architecture of pricing engines

Ft-1

Nt-1
Pt-1

Nt

Ft

Pt

Nt

MUX

MUX

MUX

CNT=0

X

/

+

+
1

Ft<U UNG

P0=exp(-)
F0=exp(-)

N0=0

Buffer

Buffer

Buffer

Figure 4. Poisson Generator block

The Poisson Generator block generates a series of num-

bers following Poisson distribution for the next block; the

mean θ of the Poisson distribution are set from Jump Paras

input. The HW implementation of the Poisson Generator is

presented in Figure 4, following the algorithm in described

in Figure 3.9 of [10].

Taking into account the Jump Paras and Possion number

Nt from previous block, the Jump Generator computes the

sudden change in stock price and passes the result to the

Price Core Module. These 2 blocks are available in the

pricing engine of Merton and Bates models only.

The GNGs block is used to generate a series of numbers

following Gaussian distribution. Firstly, the uniform random

Z2

X X

+

ZV = Z1

UNG

Box-Muller

UNG

ZS

Figure 5. GNG block for SV models

number are generated using Min-Twister methods (block

UNG). Then they are converted to Gaussian random number

using Box-Muller method. This block is designed with the

algorithms given in [12] and [26] .The configuration factor

of this block, which is controlled by Model Paras, is the

number of GNG instances. For models with constant Volatil-

ity (Black Scholes and Merton), there is only 1 instance

implemented, while SV models (Heston, Bates) require two

instances per time step. Moreover, the Gaussian numbers

generated for SV models are correlated to each others with

correlation coefficient ρ. The functional scheme of GNGs

block for SV models are presented in Figure 5.

The Variance Core is included in pricing engine by Mod-

els Paras when working with Stochastic Volatility models

(Heston, Bates). Its function is to compute the volatility of

the next time step. The discretization formula of this block

is given in Equation 8 [16] and the optimized version with

precomputed parameters is given in Equation 9.

V (t+ dt) = V (t) + κ(θ − V ∗(t))dt+ σ
√

V ∗(t)
√
dtZv (8)

V (t+ dt) = V (t) + kpd− V ∗(t) ∗ kd+ sd ∗
√

V ∗(t)Zv (9)

where kpd = κ ∗ θ ∗ dt; kd = κ ∗ dt; and sd = σ ∗ √
dt

do not change over iterations and are precomputed in the

Coeff. Precomputation block.

The Price Core computes the movement of the price for

the next time step and has two different implementation

versions for SV models (Heston, Bates) and non-SV models

(BS and Merton). Moreover, the discretization formula of

this block is also differentiated by the Jump component.

Therefore, the discretization formulas of Black Scholes

and Heston model are given as in Equation 10, 11 [16].

While considering the Jump component, the coefficient r is

adjusted as in Equation 12 [4] and the discretization scheme

for Merton and Bates are described in Equation 13, 14. The

decision on configuring the appropriate version for this block

again depends on the Model Paras input.

S(t+ dt) = S(t) ∗ exp((r − 0.5 ∗ σ2)dt+ σ
√
dtZs) (10)

Table I
IMPLEMENTATION FOR DIFFERENT OPTION TYPES

Option Type Carry Value Carry Core Payoff Core
Vanilla NA NA C = max(ST −K; 0)

Asian Sum of previous prices Ssum = Ssum + St C = max(
Ssum

n
−K; 0)

Barrier Existence E = E&(St < H) C = (E)?max(ST −K; 0) : 0
Binary NA NA C = (ST > K)?Q : 0
Lookback Min of previous prices Smin = min(Smin, St) C = max(Smin −K; 0)

S(t+ dt) = S(t) ∗ exp((r − 0.5 ∗ V (t))dt+
√

dtV (t)Zs)
(11)

radj = r − λ ∗ (exp(a+ 0.5 ∗ b2)− 1) (12)

S(t+ dt) = S(t) ∗ exp((radj − 0.5 ∗ σ2)dt+ σ
√
dtZs + J)

(13)

S(t+ dt) = S(t) ∗ exp((radj − 0.5 ∗ V (t))dt+
√

dtV (t)Zs + J)
(14)

The Carry Core, which computes the additional value

needed to be carried during the pricing path to define

special execution condition. The Carried Value and their

implementation for specific type of options such as Asian

Option, Barrier Option and Lookback Option are presented

in Table I.

The Payoff Core is computed only once per simulated path

at maturity T and its configuration depends on the value of

Option Type Parameters. The implementations for different

option types are given in Table I. For the sake of brevity,

only the formula for Call options are presented. Finally, the

price of all the simulated paths are accumulated to form the

final accumulated price.

As can be seen from the implementation of Variance Core,

Price Core and Existence Core modules, the result values of

these blocks are dependent on the values from previous time

steps which are stored and transfered to them by the Loop

back Block.

VI. EXPERIMENTAL RESULTS

A series of experiments are conducted to evaluate the

efficiency and performance of the hardware accelerators

generated from our framework. In our implementation, the

option pricing request is described in XML format, the

proposed design flow and optimization framework in Section

IV are developed using Python and Maxeler IDE [15]. The

generic Pricing Engine in Section V is developed by Maxj

data flow language, the Java High Level Synthesis language

from Maxeler [15]. All 4 pricing engines are developed with

C-slow optimization techniques [24]. The experiment results

are obtained by implementing and running the engines

on Maxeler Workstation model MAX3424A [15], which

features with a Xilinx Virtex-6 SX475T FPGA device and

Intel Core i7 870 2.93 GHz with 16GB RAM.

A. Comparison with SW implementations

In the first experiment, we compare the throughput of

our FPGA accelerators with the software implementation

for CPU. The competitor in this experiment is the online

option pricing service Premia provided by INRIA (the

French national institute for research in computer science

and control) [2]. For all the models, we choose to price

European Vanilla Option with 1 million paths and 100

time steps. The throughput of both implementations and the

speedup of our pricing engines over the CPU implementation

are reported in Figure 6. As can be observed from the Figure,

all the pricing engines from our framework achieve two

orders of magnitudes higher throughput over the SW im-

plementations. The speedup is more significant for complex

models since each simulated path of these models requires

much more computation effort and execution time for SW

implementation. On the other hand, for highly pipelined

hardware accelerators with one output per clock cycle, the

complex data path of these models do not significantly affect

the throughput of the engine.

B. Comparison with other HW accelerators

To further examine the performance of our HW accel-

erators, we compare the throughput and speedup of our

pricing engine with other available engines in literature.

Since there is no work covering all the pricing models as

ours, we have considered different competitors: for the Black

Scholes engine the most recent work is reported by [22],

while the most efficient manual design is proposed in [23];

for Heston pricing engine, [8] is the work using the same

Monte Carlo method; for Bates models, the only available

1440
920 1080 738

168.4 168.6

422.1

293.3

0

50

100

150

200

250

300

350

400

450

1

10

100

1000

10000

BS Merton Heston Bates

Sp
ee

du
p

Th
ro
ug

hp
ut

(M
p/
s)

HW SW Speedup

Figure 6. Comparison with other SW implementations

Table II
COMPARISON WITH OTHER HW IMPLEMENTATIONS

Throughput
Work FPGA Frequency BS Merton Heston Bates
[23] Virtex 5 200 3200 NA NA NA
[22] Virtex 5 80 640 NA NA NA
[8] Virtex 5 100 NA NA 142.7 NA
[5] Zynq 100 NA NA 459 NA
[1] Virtex 6 175 NA NA NA 700

Ours Virtex 6 115-140 1680 920 1080 738

work reported is from Maxeler [1]. Table II summarizes the

comparison results. Since the results from above-mentioned

works were reported with different pricing set-up (option

type, number of simulated paths, number of time steps),

we used throughput (number of computed time steps per

second) as the performance metrics to put all the results

in the same perspective. As can be seen from the table,

our engine for Black Scholes model has around 2.25 times

better performance over the design in [22] and achieves

about 45% performance of the highly customized design

in [23]. For the Heston models, the accelerators from our

framework have clear advantage over previous works. Part of

the reasons for this improvement comes from the technology

of the devices, but the main explanation comes from our

highly pipelined architecture. For the Bates model, we use

the same technology as Maxeler implementation but can

achieve around 5% improvement in throughput by using

more efficient discretization scheme and simpler methods

of generating volatility.
Although the main advantage of our proposed framework

is the productivity and reduction on development time, it is

hard to quantify and compare with previous work in this

aspect. From authors’ experience, following the framework

and modular architecture, a designer with little knowledge

about option pricing applications can develop a new engine

for new models or new option types in less than a week.

VII. CONCLUSION

In this work, a framework for generating option pricing

hardware accelerators has been proposed. The framework

is combined with a highly modular architecture design

that can cover four popular pricing models and numerous

type of options. Moreover, a heuristic for finding local

optimal parameter set for the pricing engines is developed to

further improve the performance of generated accelerators.

As a result, the engines developed from our framework can

achieve a speedup of 2 orders of magnitude compared to SW

implementations and overcome most of other reported accel-

erators. In the future, we plan to develop performance and

hardware resource models for each of the pricing engines

to reduce the time for estimating performance and hardware

usage so that we can apply more sophisticated optimization

techniques for design space exploration. Another direction

that we would like to consider is to develop the framework

on Vivado HLS platform to bring more flexibility and further

performance improvement to the architecture.

ACKNOWLEDGMENT

This work is supported in part by the German Research

Foundation (DFG) within the Cluster of Excellence Center

for Advancing Electronics Dresden (cfaed).

REFERENCES

[1] Maxeler App Galery, 2015. http://appgallery.maxeler.com/.
[2] PREMIA - A platform for pricing financial derivatives, 2015.

www.rocq.inria.fr/mathfi/Premia/index.html.
[3] D. S. Bates. Jumps and stochastic volatility: Exchange rate processes

implicit in deutsche mark options. Review of financial studies,
9(1):69–107, 1996.

[4] M. Briani. Numerical methods for option pricing in jump-diffusion
markets. PhD thesis, PhD thesis, Università degli Studi di Roma La
Sapienza, 2003.

[5] C. Brugger et al. Hyper: A runtime reconfigurable architecture for
monte carlo option pricing in the heston model. In FPL, pages 1–8.
IEEE, 2014.

[6] C. Brugger et al. Mixed precision multilevel monte carlo on hybrid
computing systems. In Computational Intelligence for Financial
Engineering & Economics (CIFEr), 2104 IEEE Conference on, pages
215–222. IEEE, 2014.

[7] G. C. T. Chow et al. A mixed precision monte carlo methodology
for reconfigurable accelerator systems. In FPGA, pages 57–66. ACM,
2012.

[8] C. de Schryver et al. An energy efficient fpga accelerator for monte
carlo option pricing with the heston model. In ReConFig, pages 468–
474. IEEE, 2011.

[9] C. de Schryver et al. A multi-level monte carlo fpga accelerator for
option pricing in the heston model. In DATE, pages 248–253. EDA
Consortium, 2013.

[10] P. Glasserman. Monte Carlo methods in financial engineering,
volume 53. Springer Science & Business Media, 2003.

[11] J. C. Hull. Options, futures, and other derivatives. Pearson Education
India, 2006.

[12] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 8(1):3–30, 1998.

[13] R. C. Merton. Option pricing when underlying stock returns are
discontinuous. Journal of financial economics, 3(1):125–144, 1976.

[14] B. Nelson. Fpga design productivity–a discussion of the state of the art
and a research agenda. In Reconfigurable Computing: Architectures,
Tools and Applications, pages 1–1. Springer, 2009.

[15] O. Pell and V. Averbukh. Maximum performance computing with
dataflow engines. Computing in Science & Engineering, 14(4):98–
103, 2012.

[16] F. D. Rouah. Euler and milstein discretization. Documento de
trabajo, Sapient Global Markets, Estados Unidos. Recuperado de
www. frouah. com, 2011.

[17] D. B. Thomas. Acceleration of financial monte-carlo simulations
using fpgas. In High Performance Computational Finance (WHPCF),
2010 IEEE Workshop on, pages 1–6. IEEE, 2010.

[18] D. B. Thomas, J. A. Bower, and W. Luk. Automatic generation
and optimisation of reconfigurable financial Monte-Carlo simulations.
In Application-specific Systems, Architectures and Processors, 2007.
ASAP. IEEE International Conf. on, pages 168–173. IEEE, 2007.

[19] X. Tian and K. Benkrid. Design and implementation of a high
performance financial Monte-Carlo simulation engine on an FPGA
supercomputer. In FPT, pages 81–88. IEEE, 2008.

[20] X. Tian and K. Benkrid. High-performance quasi-monte carlo
financial simulation: Fpga vs. gpp vs. gpu. ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 3(4):26, 2010.

[21] X. Tian and C. Bouganis. A run-time adaptive fpga architecture for
monte carlo simulations. In FPL, pages 116–122. IEEE, 2011.

[22] J. K. Toft and A. Nannarelli. Energy efficient fpga based hardware
accelerators for financial applications. In NORCHIP, 2014, pages 1–6.
IEEE, 2014.

[23] A. H. Tse, D. B. Thomas, K. H. Tsoi, and W. Luk. Efficient
reconfigurable design for pricing asian options. ACM SIGARCH
Computer Architecture News, 38(4):14–20, 2011.

[24] N. Weaver et al. Post-placement c-slow retiming for the xilinx virtex
fpga. In FPGA, pages 185–194. ACM, 2003.

[25] C. Wynnyk and M. Magdon-Ismail. Pricing the american option using
reconfigurable hardware. In Computational Science and Engineering,
2009. CSE’09. International Conference on, volume 2, pages 532–
536. IEEE, 2009.

[26] G. Zhang et al. Reconfigurable acceleration for monte carlo based
financial simulation. In FPT, pages 215–222. IEEE, 2005.

