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Abstract
Standard epidemic models exhibit one continuous, second order phase transition to macroscopic
outbreaks. However, interventions to control outbreaks may fundamentally alter epidemic
dynamics. Here we reveal how such interventions modify the type of phase transition. In
particular, we uncover three distinct types of explosive phase transitions for epidemic dynamics
with capacity-limited interventions. Depending on the capacity limit, interventions may (i) leave
the standard second order phase transition unchanged but exponentially suppress the probability
of large outbreaks, (ii) induce a first-order discontinuous transition to macroscopic outbreaks, or
(iii) cause a secondary explosive yet continuous third-order transition. These insights highlight
inherent limitations in predicting and containing epidemic outbreaks. More generally our study
offers a cornerstone example of a third-order explosive phase transition in complex systems.

1. Introduction

Phase transitions separate qualitatively different collective states emerging in large complex systems [1–6].
Many models of complex systems dynamics, for instance the standard susceptible-infected-recovered (SIR)
model of epidemic dynamics and models of random percolation, exhibit a single phase transition that often is
second order and thus continuous [7–9]. For epidemic spreading dynamics, a continuous transition implies
that the total number of individuals infected during an epidemic continuously varies with the infectiousness.

Previous research has shown that complex systems may exhibit more intricate and involved collective
dynamics and include discontinuous or explosive transitions if the settings become strongly nonlinear,
severely constrained or heterogeneous. Examples include a strong dependence of the epidemic transition on
the connectivity in structured populations with scale-free interaction topology [10, 11], epidemics where
treatment options are limited by resource availability [12] and discontinuous hybrid phase transitions of
co-evolving epidemics of two or more diseases [13, 14]. Recent related results for explosive percolation
processes, however, indicate that such explosive transitions might only appear discontinuous in finite size
systems but are often continuous with non-standard critical exponents [15–22].

In this Letter, we demonstrate that capacity-limited interventions may induce explosive transitions that
may appear discontinuous but in fact are third-order.

The COVID-19 pandemic has highlighted the importance of interventions such as testing, contact
tracing and vaccinations to control the spread of epidemics [23]. Importantly, the limited capacity of such
interventions restricts their capability to contain epidemic outbreaks, especially when the time scales of test
or vaccination rates are similar to those of the disease spread and progression. Recent empirical observations
and modeling studies [12, 23–25] suggest that interventions may prevent outbreaks or reduce their size, yet
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total case numbers may rapidly increase once the intervention capacity limit is reached, leading to sudden
explosive and apparently discontinuous transitions to large outbreaks. However, the exact type of phase
transitions and the mechanisms underlying them remain unclear.

Here, we uncover explosive phase transitions emerging in epidemic models with limited-capacity
interventions. We find three distinct types of transitions depending on the scaling of the intervention
capacity with the total population size. We clarify the mechanisms underlying these transitions by providing
generic arguments under which conditions these transitions emerge, valid for a broad class of models. More
generally, our results highlight an example of a third-order explosive phase transition in a generic complex
system.

2. Results

In the standard SIR model, susceptible (S) individuals become infected (I) with rate β SI/N and are removed
or recover (R) with a rate γ I (figures 1(a)–(e)). Here, we denote both the states and the absolute number of
individuals in that state with capital letters S, I and R. β I/N denotes the infection rate per individual and γ
denotes the recovery rate per individual. The basic reproduction number R0 = β/γ quantifies the expected
secondary infections caused by a single infected in a fully susceptible population and characterizes the

qualitative collective dynamics of the model. If R0 < R(1)
c = 1, the number of infected individuals I(t) on

average exponentially decreases with time t. If R0 > R(1)
c , it initially increases exponentially. As a result, in the

limit of an infinitely large population N→∞, a macroscopic outbreak occurs and ultimately affects some
positive fraction itot = limN→∞ Itot/N> 0 of the total population, where Itot = limt→∞[R(t)+Q(t)] =
Itot = N− lim

t→∞
S(t) describes the total number of individuals ever infected. This relative total outbreak size

itot serves as an order parameter, distinguishing the two regimes, and is implicitly given by [9]

itot = 1− e−R0 itot (1)

with a solution itot > 0 only above a critical reproduction rate, R0 > R(1)
c = 1, compare figure 1(e).

We modify the standard SIR model to include capacity-limited interventions by adding a single new state
(Q) (e.g. quarantine or treatment), see figures 1(f)–(j) for an illustration of this SIRQ model. In addition to
the standard state transitions, infected individuals are removed into a state Q at an additional rate δ I but at
most at a rate κ, denoting the intervention capacity in units of individuals per time. The microscopic
dynamics of both models follows a stochastic process where all transitions occur as independent Poisson
processes at their given rates. These dynamics determine the probability P of an outbreak when a single
individual is initially infected (compare figures 1(d) and (i)). The macroscopic dynamics in the limit of
infinitely large populations, N→∞ are described by the mean field rate equations

ds

dt
=−β s i

di

dt
= β s i− γ i−min

[
δ i, lim

N→∞
κ/N

]
, (2)

where the lower case letters s, i and r denote the fraction of individuals in the corresponding state, e.g.
s= limN→∞ S/N. These dynamics govern the relative total outbreak size itot if a macroscopic outbreak
occurs. We numerically illustrate our arguments and calculations for parameters γ = δ = 1 for clarity of
presentation and change the infection rate β to vary R0.

Compared to the standard SIR model, the interventions shift the critical point because infected

individuals are additionally removed into state Q. Macroscopic outbreaks only occur when R0 > R(2)
c > 1

(compare figures 1(e) and (j)). Once the reproduction number even slightly crosses a second threshold

R(3)
c > R(2)

c , the total number of infected surges dramatically (figure 1(j)). In contrast to the smooth changes
with the reproduction number in the standard SIR model (figures 1(b) and (c)), such explosive transitions
may pose major challenges for predictability and control of epidemic dynamics. Small changes such as
stochastic number fluctuations in finite size systems or small deviations in the reproduction number may
yield large qualitative changes in the epidemic dynamics (figure 1(h)).

Do these capacity-limited interventions create a discontinuous transition in the epidemic dynamics? As
long as I(t)< Ic = κ/δ, infected individuals recover at an effective rate γeff I= (γ+ δ) I= 2 I. The expected
dynamics of the system are described by an effective reproduction number Reff = β/γeff = R0/2.
Consequently, we expect the critical point above which macroscopic outbreaks occur to be shifted to

R(2)
c = 1+ δ/γ = 2. If at any time there are more infected individuals, I(t)> Ic, the effective recovery rate

reduces to γeff I= γ I+κ < 2 I. To understand how this change affects the epidemic dynamics, we consider
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Figure 1. Impact of capacity-limited interventions on epidemic spreading processes. Dynamics of the standard SIR model
(a)–(e) and a model with capacity-limited interventions (SIRQ model, panels (f)–(j)). (a), (f) Compartment model sketch of
both models. (b), (c), (g), (h) Dynamics of the number of currently infected I(t) during a typical outbreak for three reproduction
numbers R0, each starting from I1(0) = 10 initially infected. Outbreak dynamics change smoothly in the SIR model (b), (c) but
vary much more strongly under the influence of interventions (g), (h). (d), (i) The outbreak probability P quantified by the
fraction of realizations with a large number Itot >

√
N of total infected out of 104 realizations, each with I1(0) = 1. Without

interventions, large outbreaks emerge already for R0 > R
(1)
c = 1 (panel (d)); interventions strongly suppress the outbreak

probability as long as R0 < R
(2)
c = 2 (panel (i)). (e), (j) The average total size of outbreaks grows continuously from zero once

R0 > R
(1)
c for the SIR model without interventions or R0 > R

(2)
c for the SIRQ model, respectively. With limited intervention

capacity, a secondary transition emerges at R
(3)
c > R

(2)
c , where the number of total infected grows dramatically upon a small

increase in the basic reproduction number R0, quickly approaching the outbreak size expected without interventions. This

transition is reflected in the strong variation of the time evolution (panel (h)) near R
(3)
c . Grey lines indicate the expected number

of infected in the standard SIR model and with unlimited intervention capacity κ→∞, respectively. All results are illustrated for
total population size N= 106, recovery rate γ= 1, δ= 1, and intervention capacity κ= 104.

the early microscopic spreading dynamics. With a single initially infected individual, the number of currently
infected changes by+1 or−1 with each infection or recovery event, respectively. The probability for each
event is proportional to the rates of the respective state transitions. Even if the number of infected should
decrease on average and we would expect the epidemic to die out, there is a non-zero probability to reach any
number of currently infected I(t)⩽ N.

The early dynamics if I(t) ever becomes larger than Ic is thus equivalent to the Gambler’s Ruin threshold
crossing problem, see supplemental material for a more detailed description. In the following, we reveal three
distinct phase transitions depending on the scaling of the intervention capacity with the population size,
κ∝ Nα.

2.1. Constant intervention capacity
For constant κ∝ N0, the system exhibits some positive probability of reaching I> Ic. While this probability
is exponentially suppressed with increasing intervention capacity κ, the interventions cannot completely
prevent outbreaks. Once the number of infected becomes sufficiently large, the constant intervention rate κ
becomes negligible compared to the natural recovery rate γ I and the system behaves like a standard SIR
model without interventions. Consequently, macroscopic outbreaks occur with positive probability as soon

as R0 > R(1)
c = 1, similar to the standard SIR model, but the outbreak probability is exponentially suppressed

with the intervention capacity κ (figure 2(a)). The macroscopic dynamics of the outbreaks that do occur is
determined by the rate equation (2). The size of an outbreak (when it does occur) is thus the same as in the
standard SIR model (compare figures 3(a) and (b)).

2.2. Sublinear intervention capacity
For sublinearly scaling intervention capacity κ∝ Nα with 0< α < 1, the same argument for the microscopic
dynamics applies. However, now the threshold value Ic = κ/δ ∝ Nα grows with the population size. Thus,
the probability for the outbreak to grow beyond this threshold becomes zero in the large population limit

N→∞ as long as the effective reproduction number Reff = R0/2< 1, i.e. as long as R0 < R(2)
c = 1+ δ/γ = 2.

Only then can macroscopic outbreaks occur with a finite probability (figure 2(b)). When a macroscopic
outbreak does occur, the intervention rate becomes negligible since it scales sublinearly with the population
size, κ/N→ 0 as N→∞. The dynamics is equivalent to the standard SIR model. Consequently, we observe a

discontinuous transition of the outbreak size at R(2)
c = 1+ δ/γ = 2 (figures 3(c) and (d)).
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Figure 2. Growing intervention capacity delays macroscopic outbreaks. The outbreak probability P , computed as the fraction of
realizations that reach Itot >

√
N out of 105 total realizations from one initially infected, I1(0) = 1, behaves qualitatively

differently for constant and (sub)linearly scaling intervention capacity. (a) For constant intervention capacity (κ= 100), the

outbreak probability settles to non-zero values for any R0 > R
(1)
c = 1. (b), (c) For sublinear and linear intervention capacity

(κ=
√
N and κ= 0.01N, respectively), the outbreak probability goes to zero for R0 < R

(2)
c = 2 in the limit of infinitely large

populations; interventions prevent outbreaks. At the critical point R
(2)
c = 2 the outbreak probability decreases as a power law as

N→∞. Note that due to defining outbreaks by Itot >
√
N, and our choice of κ=

√
N and κ= 0.01 N ⩾

√
N for N ⩾ 104, the

outbreak probability for sublinear and linear scaling is identical since in both cases the intervention capacity is equal to or larger
than our outbreak threshold. All results are shown for recovery rate γ= 1 and δ= 1.

Figure 3. Limited quarantine induces different explosive transitions. (a), (b) For constant intervention capacity κ= 100, only few

outbreaks are observed for R0 < R
(2)
c = 1+ δ/γ = 2 due to the small outbreak probability (panel (a), compare figure 2(a)).

Outbreaks that do occur quickly grow to the same size as for standard SIR dynamics without interventions (dashed line), as also
demonstrated by increasing the number of initially infected (I1(0) ∈ {1,10,100,1000} for N= 108, panel (b)). (c), (d) For

sublinear intervention capacity, κ= N1/2, no outbreaks occur for R0 < R
(2)
c = 1+ δ/γ = 2 in the thermodynamic limit

(compare figure 2(b)). For R0 > R
(2)
c , the outbreak size is close to that of SIR dynamics without intervention (dashed line). At the

critical point R0 = R
(2)
c , the outbreak size increases discontinuously in the thermodynamic limit N→∞. (c, inset) The width

∆R0 = R+
0 −R−

0 of the transition region in which the total number of infected increases from Itot(R
−
0 )/N= 0.1 to

Itot(R
+
0 )/N= 0.75 decays to zero as N→∞. (e), (f) For linear intervention capacity κ= 0.01N, no outbreaks occur for

R0 < R
(2)
c = 1+ δ/γ = 2 in the thermodynamic limit (compare figure 2(c)). Above R

(2)
c = 1+ δ/γ = 2 the outbreak size is

initially the same as in the standard SIR model with increased effective recovery rate γ+ δ (compare figure 1(j)). At a second

critical point R
(3)
c ≈ 2.3203, where the concurrent number of infected during the outbreak overwhelms the intervention capacity

(I(t)> κ/δ, panel (f)), the outbreak size undergoes a second, sudden but continuous transition. (g)–(i) The fraction of total

infected itot computed from the mean-field rate equation (2) and its derivatives reveal a continuous third-order transition at R
(3)
c

where only the second derivative d2itot/dR2
0 is discontinuous. All outbreak sizes are evaluated as averages over large outbreaks

with Itot >
√
N over at least 100 realizations with I1(0) = 10 initially infected (unless explicitly stated otherwise). All results are

shown for recovery rate γ= 1 and δ= 1.

2.3. Linear intervention capacity
For linear intervention capacity κ= κ̃N∝ N with constant κ̃, the dynamics become more intriguing. Again,
the same argument for the microscopic dynamics applies as for the sublinearly scaling intervention capacity.

Macroscopic outbreaks are only possible for R0 > R(2)
c = 1+ δ/γ = 2 (figure 2(c)). However, sufficiently

small macroscopic outbreaks do not immediately exceed the intervention capacity threshold Ic ∝ N, and I
remains smaller than Ic during the outbreak. We thus observe a continuous second order transition
equivalent to an SIR model with recovery rate γeff = (γ+ δ) = 2. Only if the reproduction number is larger

than a second critical value, R0 > R(3)
c , the concurrently infected exceed the threshold Ic during the outbreak

and a second transition occurs.
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To reveal the type of the second transition, we compute the scaling of the number of additionally infected
when the intervention capacity is overwhelmed. We here sketch the main steps in the argument, a
step-by-step calculation is provided in the supplemental material. We focus on the time t∗ at which the
number of infected first exceeds the threshold I(t∗) = Ic, or equivalently i(t∗) = Ic/N= κ̃/δ. Until t∗, the
dynamics are identical to a system with infinite intervention capacity κ→∞ with i∞(t) infected. Exactly at
t∗ both i(t∗) and its first derivative are still the same as for infinite intervention capacity (equation (2)), but
the second derivative changes to the right of t∗. Compared to a system with infinite intervention capacity, as
t→ t∗ we find

i(t)− i∞(t)∼ 1

2
[i ′ ′(t∗)− i ′ ′∞(t∗)] (t− t∗)2

∝
(
R0 −R(3)

c

)1/2
(t− t∗)2 . (3)

However, the number of infected remains above the threshold only for a short time∆t∝ (R0 −R(3)
c )1/2,

following from the quadratic expansion around the maximum of i(t) which increases linearly with

(R0 −R(3)
c ) (see supplemental material for details). We then find the leading order scaling of the additional

infections by integrating the additional infection rate β s(t) [i(t)− i∞(t)] for the time∆t, resulting in a

leading order correction proportional to [i ′ ′(t∗)− i ′ ′∞(t∗)]∆t3 ∝ (R0 −R(3)
c )2. Secondary infections enter

only as higher order corrections. The explosive nature of the transition emerges from a very large prefactor of
the additional term, scaling as κ−6 and thus resulting in a very sudden increase in the total number of
infected individuals especially for small intervention capacities. We thus find that the second derivative of

itot(R0) is discontinuous at R0 = R(3)
c and the transition is sudden, yet third-order, and thus surprisingly even

smoother than the second order transition at R(2)
c (figures 3(e)–(i)).

3. Discussion

The above explanations remain qualitatively valid for a broad class of systems since they only rely on scaling
arguments to understand the impact of the limited intervention capacity on the microscopic dynamics and
generic leading order behavior for the effect on the macroscopic dynamics. Our argument only requires that:
(i) The system exhibits non-trivial outbreak dynamics even with infinite intervention capacity, ensuring that
outbreaks exist in the first place if the intervention capacity scales with the population size. (ii) The
intervention capacity enters the macroscopic dynamics as a hard limit such that the derivative of i(t) is
continuous but not differentiable when the number of infected overwhelms the intervention capacity
(compare equation (2)). In other cases, the dynamics may arbitrarily closely approximate the phase
transition observed here but the fraction of infected changes smoothly with the reproduction number R0.

In the supplemental material, we present a range of simple and more complex model variations
illustrating these conditions and the robustness of the reported transitions. In particular, we (a) highlight the
necessity of both conditions to observe the third-order transition by analyzing small variations of the model
that do not fulfill one of the two conditions, and (b) demonstrate the universality of our arguments by
analyzing various similar models including, for example, additional infected states, partially effective
interventions, or explicit time delays between testing and intervention, that all show the same qualitative
dynamics.

Overall, our results offer a novel perspective on epidemic containment with capacity-limited
countermeasures. The different types of explosive transitions to large outbreaks present different challenges
for the predictability and control of epidemic dynamics. This applies in particular to the evaluation of
containment measures across cities or countries when the intervention capacity depends on the population
size.

They also highlight the option of novel types of simultaneously explosive as well as third-order phase
transitions in complex systems in general.
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