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Abstract—Understanding how local perturbations induce the
transient dynamics of a network of coupled units is essential to
control and operate such systems. Often a perturbation initiated in
one unit spreads to other units whose dynamical state they
transiently alter. The maximum state changes at those units and the
timings of these changes constitute key characteristics of such
transient response dynamics. However, even for linear dynamical
systems it is not possible to analytically determine time and
amplitude of the maximal response of a unit to a perturbation.
Here, we propose to extract approximate peak times and
amplitudes from effective expectation values used to characterize
the typical time and magnitude of the response of a unit by
interpreting the system’s response as a probability distribution over
time. We derive analytic estimators for the peak response based on
these expectation value measures in linearized systems operating
close to a stable fixed point. These estimators can be expressed in
terms of the inverse of the system’s Jacobian. We obtain identical
results with different approximations for the response dynamics,
indicating that these estimators become exact in the limit of weak
coupling. Furthermore, the results suggest that perturbations
spread ballistically in networks with diffusive coupling.

Index Terms—Network dynamics, perturbations, perturbation
spreading.

I. INTRODUCTION

TRANSIENT collective dynamics plays an important role

in a wide range of systems from social and biological sys-

tems where ideas or diseases spread [1]–[6] to the stability of

large scale infrastructure and supply networks such as power

grids [7]–[10]. These systems generically operate near a fixed

point and are naturally subject to perturbations, for example an

outbreak of an infection or fluctuations of the power consump-

tion and production [11]. In their simplest setting, such pertur-

bations initially affect only a single unit and spread through the

network, transiently affecting other units at different times and

with different strengths [12], [13].

Despite the importance of these spreading and propagation

processes, no general answer exists for when or how strongly a

unit is affected by an initial perturbation. Traditional measures

to characterize these transient responses are the time and mag-

nitude of the maximal (peak) response. However, even in line-

arized systems, computing such measures typically involves

the solution of transcendental equations making exact analyti-

cal predictions impossible.

A recently introduced idea [14] is interpreting the determin-

istic transient responses as probability densities in time. The

resulting “effective expectation values” constitute characteris-

tic response measures (different from traditional ones) that are

computable analytically in linearized systems in terms of the

inverse effective coupling matrix.

In this article we derive analytic estimators for the peak

response time and amplitude based on these expectation value

response measures in linearized systems affected by perturba-

tions around a stable fixed point. We approximate the response

dynamics with multiple different functions that qualitatively

reproduce it. For each approximation function, we analytically

derive both, the response strength and timing as calculated

from the expectation values and the amplitude and timing of

maximal response. Comparing these results we find analytic

estimators for the actual peak response time and magnitude in

terms of the inverse Jacobian of the linearized system.We illus-

trate that such estimators become exact in the limit of weak

coupling, independent of the topology of the coupling network.

II. PERTURBATIONS IN NETWORK DYNAMICAL SYSTEMS

Consider a general network dynamical system

dy

dt
¼ FðyÞ (1)

consisting of N coupled units i with internal state yiðtÞ ¼
yðtÞ½ �i operating close to a stable fixed point y� 2 RN . Small

perturbations to this state and their impact across the network

(Fig. 1) are described by the linearized dynamics dx=dt ¼
Mx where xðtÞ ¼ yðtÞ � y� and M ¼ dF=dy j y¼y� is the

Jacobian. The diagonal elements of M describe the internal

dynamics of the individual units while the off-diagonal ele-

ments describe the coupling between the units.

In general, the impact of a perturbation on a unit and how a

perturbation spreads through the network can be measured in

different ways: for models of epidemic spreading, describing

an outbreak across different populations coupled by a transpor-

tation network, arrival times are often defined by measuring the

first time tarrival ¼ min t : xiðtÞ � �f g when the number of

infected individuals exceeds a given threshold �. For stochastic
epidemic spreading the connection to random walk processes

allows predictions of the arrival times of the perturbation [1],
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[3], [4], [15], [16]. For other spreading processes the total

impact of the perturbation at a given unit or the maximal devia-

tion from the operating point is of interest [12], [13], [17]–[20].

Interestingly, even for the simple deterministic linear system

dx=dt ¼ Mx described above, these measures cannot be easily

evaluated analytically. The underlying reason is that calculating

peak positions or threshold crossing times typically involves

solving transcendental equations of the form a1 exp �1tð Þþ
a2 exp �2tð Þ þ . . . ¼ c for the time t, where �j are the eigenval-

ues ofM.

Recently, a complementary approach was introduced to

characterize the impact of a perturbation in such linearized

systems in terms of expectation values of effective proba-

bility distributions [14]. This approach works as follows:

We first normalize each response trajectory and interpret

the result as a probability density over time. We then

quantify the arrival time and impact of a perturbation by

expectation values and higher order moments with respect

to this effective probability distribution.

In the following we assume that the internal dynamics of each

unit is described by exponential decay with a rate bi > 0
(x ¼ 0 is a stable fixed point) and the coupling between the units
is diffusive with coupling strength aij � 0, such thatMij ¼ aij

(for i 6¼ j), aij ¼ 0 if unit i is not directly affected by unit j and
Mii ¼ �bi �

P
j aij. In this case the response of each unit

xiðtÞ to an initial perturbation xið0Þ ¼ x0ð Þi¼ dik at a single

unit k is guaranteed to be positive, xiðtÞ > 0 for all times

t > 0 (see Fig. 1). Appropriate normalization of the response

trajectories xiðtÞ ¼ exp Mtð Þx0½ �i by the total response

Zi ¼
Z 1

0

xiðtÞdt ¼ � M�1x0
� �

i
(2)

then allows the interpretation of the trajectories as if they were

probability densities over time, riðtÞ ¼ xiðtÞ=Zi. From this per-

spective, expectation values of time with respect to the proba-

bility distribution characterize the impact of the perturbation at

different units (see Fig. 2) with simple analytic expressions

[14]. For example, the expectation value

htii ¼
Z 1

0

triðtÞdt ¼ � M�2x0ð Þi
M�1x0ð Þi

(3)

describes the characteristic response time (not the peak time)

when the perturbation impacts unit i. Similarly, the typical

duration of the perturbation is measured in terms of the stan-

dard deviation si and its magnitude by the quotient Hi of total

response Zi and the standard deviation

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

ðt� htiiÞ2riðtÞdt
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðM�3x0Þi
ðM�1x0Þi

� ðM�2x0Þi
ðM�1x0Þi

� �2
s (4)

Hi ¼ Zi

si
¼ ððM�1x0ÞiÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðM�3x0ÞiðM�1x0Þi � ððM�2x0ÞiÞ2
q : (5)

These quantities are illustrated in Fig. 2 together with the

numerically determined peak response values tpeaki and xpeak
i ¼

xiðtpeaki Þ for the example system from Fig. 1. As also demon-

strated previously [14], the characteristic response times and

response magnitudes [Eq. (3) and (5)] appear to show the same

scaling as the actual peak time tpeaki and the maximal response

xiðtpeaki Þ, that means they accurately describe the relative

impact of the perturbations at different units. However, if inter-

preted as estimators for the peak response values they are

clearly biased and do not provide a good quantitative descrip-

tion of the absolute impact.

In general, for unimodal distributions as we observe for the

typical response trajectories, some conditions on the relation-

ship between mean (expectation value) and mode (position of

the maximum) are known. For example, if the distribution has

positive skewness (as the response trajectories), we typically

have htii � tpeaki . Unimodal distributions also satisfy the

Fig. 1. Typical response to a localized perturbation. (a) A small network dynamical system withN ¼ 6 units and E ¼ 9 directed interactions. (b) Responses
xiðtÞ of all units i after an initial perturbation x1ð0Þ ¼ 1 at unit k ¼ 1 (dark yellow) with homogeneous coupling strength a ¼ 1 and internal dynamics b ¼ 1.
The perturbation spreads through the network and transiently affects all other units before the system returns to the stable operating state x�i ¼ 0 for t ! 1. (c,
d) For small times t ! 0 the activity xiðtÞ of unit i grows polynomially as td with an exponent d ¼ i� 1, the graph-theoretical distance from the initially per-
turbed unit. For large times t ! 1 the activity of all units decays exponentially with exponent�b.
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condition tpeaki � htii
���

��� � ffiffiffi
3

p
si [21]. Unfortunately, no exact

connection between mean and mode for general distributions,

and thereby for general xiðtÞ, exists.
For the specific class of (initially algebraically increasing

and then exponentially decaying) responses xiðtÞ in linearized

systems, we here establish two connections between the char-

acteristic response values and the actual peak values. Specifi-

cally, the examples in [14] already suggest that the relation

between the actual peak measures and the characteristic

response measures is systematic and largely independent of the

structure of the interaction network, as also illustrated in Fig. 2

(b,c). As illustrated in Fig. 2(b), we observe an approximately

constant shift between htii and tpeaki . This suggests an additive

adjustment cT to estimate the actual peak time

Est tpeak
� 	

i
¼ htii þ cT : (6)

Similarly, as illustrated in Fig. 2(c) we also observe a con-

stant multiplicative factor between Hi and xpeak
i (note the

logarithmic axis), suggesting a multiplicative adjustment cH
such that

Est xpeak
� 	

i
¼ cH Hi : (7)

In the following we analytically derive these adjustments

from approximate response functions and show that they

results in the same form of adjustment. We use these calcula-

tions to determine the constants cT and cH and define the esti-

mators for the actual peak response based on approximating

model trajectories. For different classes of model functions

that recover the qualitative shape and the asymptotic behavior

of the response dynamics we calculate exact characteristic and

peak response values as an explicit function of the interaction

network described by M. We use these expressions to convert

the characteristic response measures resulting from effective

expectation values into estimators for the peak values for these

approximating functions and thereby for the real response

dynamics.

III. ESTIMATORS FOR THE PEAK RESPONSE

The asymptotic behavior of the units’ responses is given by

polynomial growth for t ! 0 and by exponential decay for

t ! 1 [compare Fig. 1(c,d)]. Motivated by these known

asymptotic scaling regimes, we illustrate the approach to cal-

culate the constants cT and cH using a simple family of

approximating functions

~xðtÞ ¼ ~A t
~d expð�~btÞ (8)

that roughly capture the qualitative behavior of the response

dynamics. Since the constant factor ~A does not change the

peak position or the factors cT and cH , we set ~A ¼ 1 in the fol-
lowing. We now first determine the remaining parameters ~d
and ~b of this approximate response function.

To understand the asymptotic behavior of the units for small

times, t ! 0, we consider the formal solution

xðtÞ ¼ expðMtÞx0
¼ x0 þ tMx0 þ 1=2 t2M2x0 þ . . . :

(9)

For a perturbation at a single unit k with xkð0Þ ¼ 1 this expres-
sion reduces to the matrix elements xiðtÞ ¼ dik þ tMikþ
1=2 t2ðM2Þik þ . . . . The matrix M is directly related to the

adjacency matrix of the interaction network (with additional

entries along the diagonal). Thus, for networks with homoge-

nous coupling strengths aij ¼ a, the element ðMnÞik is propor-
tional to the number of paths from k to i of length n [22]. If we

denote the (shortest path) distance from the initially perturbed

unit k to unit i as d 2 N, all elements ðMnÞik ¼ 0 for n < d
since there are no paths of length n < d. This means that the

first non-zero term in the response of unit i is given by xiðtÞ ¼
1=d!ðMdÞiktd þO tdþ1

� �
as t ! 0. The same argument holds

for networks with heterogenous coupling strengths aij. The

entry ðMnÞik is then given by the sum over all weighted paths

of length n.
For large times, t ! 1, we consider the eigenvalues ��i of

M. We explicitly write them as ��i to signify that all

Fig. 2. Expectation values quantify the relative impact of the perturbation. (a) Interpretation of the response trajectories as probability densities over time
yields the characteristic response measures introduced in [14] based on the effective expectation values defined in Eq. (2 - 5). The example shows the response
x6ðtÞ of unit 6 (dark green, compare Fig. 1) and the corresponding characteristic response measures (red). (b,c) These measures accurately characterize the rela-
tive impact of the perturbation and show the same scaling as the actual peak response times and magnitudes, illustrated here for the small example shown in
Fig. 1 where d ¼ i� 1 is the graph-theoretical distance from the perturbed unit. The response times seem to be biased additively, the response strengths multipli-
catively. This observed systematic difference suggests that an adjustment is possible to obtain estimators for the absolute peak response values based on the char-
acteristic (expectation value) response measures.
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eigenvalues have negative real part Re ��i½ � < 0 since M
describes the dynamics around an asymptotically stable fixed

point. We label the eigenvalues such that Re ��N½ � � ::: �
Re ��2½ � � Re ��1½ �. The response in terms of these eigenval-

ues is then given by

xiðtÞ ¼ xðtÞ½ �i ¼ expðMtÞx0½ �i
¼ c1 expð��1tÞ þ c2 expð��2tÞþ
¼ expð��1tÞ c1 þ c2 exp �1 � �2ð Þtð Þþ½ � ;

(10)

with constants ci depending on the initial conditions x0. For

undirected networks (symmetric M) cj ¼ vTj x0


 �
vj
� 	

i
where

v1; v2; denote the orthogonal eigenvectors of M correspond-

ing to the (real) eigenvalues ��1;��2;. For large t ! 1 the

first term dominates. Thus, the response at all units is given by

xiðtÞ ¼ c1expð��1tÞ þ O expð��2tÞ½ � with magnitude O exp½
ðRe ��1½ �tÞ�. For notational convenience, we do the following

calculations for undirected networks with real eigenvalues and

drop the real part notation, writing only ��1.

Matching the above considerations for large and small t,

defining the parameters of ~xðtÞ as ~d ¼ d and ~b ¼ �1, Eq. (8)

becomes

~xðtÞ ¼ tdexpð��1tÞ : (11)

For this approximation for the response of a unit at (shortest

path) distance d to the initial perturbation we now calculate

both the typical response measures [Eq. (3) and (5)] as well as

the true peak response values analytically. The normalization

factor ~Z [Eq. (2)] is

~Z ¼
Z 1

0

~xðtÞdt ¼ d!

�dþ1
1

; (12)

andwe define ~rðtÞ ¼ ~xðtÞ= ~Z. Here and in the following we drop
the indices of the response function denoting the dependence on

the unit i (and the initially perturbed unit k). These dependencies
become explicit by noting that the graph-theoretical distance d is
a function of i and k. The higher order moments follow analo-

gously to Eq. (12) by definition [see Eq. (3) and (5)] as

h~ti ¼ dþ 1

�1
(13)

~s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h~t2i � h~ti2

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
dþ 1

�2
1

s
(14)

~H ¼
~Z

~s
¼ d!

�d
1

ffiffiffiffiffiffiffiffiffiffiffi
dþ 1

p

�
ffiffiffiffiffiffi
2p

p d

�1

� �d

expð�dÞ as d ! 1 ;

(15)

where the last line denotes the asymptotic behavior for large distan-

ces d !1 (see Supplemental Material for detailed derivations).

To obtain the peak response measures we determine the

maximum d
dt ~xðtÞ j t¼~tpeak ¼ 0 and find

~tpeak ¼ d

�1
(16)

and consequently

~xpeak ¼ ~xð~tpeakÞ ¼ d

�1

� �d

expð�dÞ : (17)

Comparing Eq. (16) to (13) and Eq. (17) to (15) suggests the

bias corrections

cT ¼ ~tpeak � h~ti ¼ � 1

�1
(18)

and

cH ¼ ~xpeak

~H
¼

ffiffiffiffiffiffiffiffiffiffiffi
dþ 1

p
dd

exp dð Þ d!
¼ 1ffiffiffiffiffiffi

2p
p þOðd�1Þ ;

(19)

where the last line describes the asymptotic behavior for large

distances d. Note that these factors are independent of the ori-
gin of the perturbation k or the specific unit i for large distances
but only depend on the network structure through the largest

eigenvalue��1. Analogously, we now convert the characteris-

tic response measures for the original trajectories xiðtÞ to the

estimators for the peak height and position

Est tpeak
� 	

i
¼ htii �

1

�1
¼ � M�2x0ð Þi

M�1x0ð Þi
� 1

�1
(20)

Est xpeak
� 	

i
¼

ffiffiffiffiffiffiffiffiffiffiffi
dþ 1

p
dd

exp dð Þ d! Hi

¼ Hiffiffiffiffiffiffi
2p

p þOðd�1Þ
(21)

where d ¼ dði; kÞ is the graph theoretical distance from the per-

turbed unit k to unit i. Consequently, this also suggests the new
definition of the typical response duration as Dti ¼ Zi=Est
xðtpeakÞ� 	

i
¼ ffiffiffiffiffiffi

2p
p

si þOðd�1Þ, illustrated in Fig. 3.

IV. UNIVERSAL BALLISTIC SPREADING FOR

WEAK COUPLING?

The calculations above do not mathematically imply that

these results should extend to the real response dynamics. Spe-

cifically, the limiting behavior of ~xðtÞ is not purely exponential
for t ! 1 but scales as tdexp ��1tð Þ. Beyond numerical vali-

dation of the results, we compute the same adjustments for other

approximating functions that do exhibit the correct asymptotic

scaling for both t ! 0 and t ! 1. Importantly, comparing the

results of all of these calculations, we find identical adjustments

as above in the limit of weak coupling a=�1 ! 0 (see Supple-

mental Material for details and calculations). Numerical analy-

sis, illustrated in Fig. 4, supports that estimator errors indeed

decay to zero for weak coupling a=�1 ! 0. Together, these
results suggest that the adjustments we derived above are uni-

versal in this limit.
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Moreover, both the peak response time as well as the

characteristic response times increase linearly with the dis-

tance d in this limit for all families of approximating

response functions. This indicates that the spreading of the

perturbation is ballistic, even though the coupling is diffu-

sive. This observation is in line with heuristic predictions

for different dynamics such as diseases spreading in trans-

portation networks [1]–[4], [6]. In these models the mobil-

ity rate (coupling strength) is typically much slower then

the internal dynamics of the individual units (weak coupling

limit) and the observed arrival time increases linearly with

the (effective) distance of a unit to the original outbreak

location.

V. ACCURATE ESTIMATION ACROSS NETWORK TOPOLOGIES

We numerically test the accuracy of the estimators across dif-

ferent network topologies for fixed a=�1. We perturb each unit

in the network once and record the resulting typical response

times and magnitudes as well as peak values. For simplicity we

use constant coupling strengths aij 2 0;af g and identical inter-
nal dynamics bi ¼ b ¼ �1 ¼ 1 in these examples. However,

this is not a necessary condition for our results to hold as the der-

ivation given above holds for general matrices M, assuming

only xiðtÞ > 0 for all t > 0 and xiðtÞ ! 0 as t ! 1.

Figure 5 shows the results for Poisson random networks

(narrow degree distribution, small diameter), Barabasi-Albert

scale free random networks (broad degree distribution, small

diameter) and random geometrically embedded networks (nar-

row degree distribution, large diameter) for a=�1 ¼ 1. The
adjustment systematically improves the estimate compared to

the characteristic response values but is still not exact, as

expected for non-zero a=�1. Specifically, the peak time is typi-

cally underestimated. The estimate of the peak height becomes

more accurate for large distances (small xpeak). Figure 6 shows

the same simulations with weaker coupling a=�1 ¼ 0:1. As
expected from the analytical calculations, the estimates agree

much better with the exact peak values. Additional results for

absolute and relative errors of the estimators are shown in the

Supplemental Material.

We specifically note, that all assumptions in the derivations

presented above are satisfied also for directed networks or net-

works with heterogeneous coupling strengths. As seen in Fig. 6

(b), heterogeneous network structures (and similarly heteroge-

neous coupling strengths) cause larger fluctuations in the esti-

mations. The reason is the existence of multiple short paths or

stronger coupling along these paths in such networks. However,

the analytic results remain correct. Most importantly, the esti-

mators become exact in the limit of weak coupling, independent

of the network topology or coupling strength distribution.

Fig. 3. Adjusted expectation values. (a) Illustration of the adjusted expectation value quantifiers (compare Fig 2). (b,c) With the adjustments derived in the
main text the expectation values [Eq. (2 - 5)] are converted into more accurate estimators [Eq. (20) and (21)] for the actual time and especially the peak magni-
tude of the response.

Fig. 4. Exact estimators in the limit of weak coupling. (a) Relative error
of the estimated peak height Eq. (21). (b) Absolute error of the estimated peak
time Eq. (20). Both errors disappear for large �1=a, that means for weak cou-
pling a=�1 ! 0. Each point indicates one observation in R ¼ 100 connected
Poisson random networks with N ¼ 20 units and M ¼ 40 links with fixed
�1 ¼ b ¼ 1 and variable coupling strength a, regardless of the distance of the
unit to the origin of the perturbation.
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VI. CONCLUSION

Understanding the propagation of perturbation-induced sig-

nals in networked systems helps to predict, control and mitigate

their impact in a range of processes in biology and engineering,

from epidemic spreading of diseases to the impact of load

shedding or infrastructure outages in electric power grids.

Among the fundamental questions are when and how strongly

perturbations initiated at some unit in a network reach other

units. So far, it has been impossible to analytically estimate

timing and strengths of such signals as an explicit function of

the underlying base state of the system and the network’s inter-

action topology. These limitations hold even for linear deter-

ministic systems because the equations determining peak

timing and strength are transcendental and as such mathemati-

cally intractable.

A recent proposal [14] suggests to take a complementary per-

spective and predicts characteristic arrival times and strengths

not in terms of peak times and amplitudes but in terms of expec-

tation values that result from interpreting the deterministic tra-

jectory of a unit’s response as a probability density. This

approach yields characteristic arrival times and strengths as

Fig. 5. Improved estimation of peak values across network topologies. The top row shows examples of the network topologies of (a) Poisson random net-
works, (b) Barabasi-Albert scale free random networks and (c) geometrically embedded random networks with periodic boundaries. The middle row shows the
resulting Est xðtpeakÞ� 	

[blue, Eq.(21)] versus the true peak height xpeak, the bottom row shows the corresponding results for Est tpeak
� 	

[blue, Eq.(20)]. Points on
the diagonal indicate perfect agreement of the estimated peak time or height with the actual peak time or height. Both estimators improve the prediction of the
actual peak values compared to the raw expectation values (red). In both cases the estimators become more accurate for larger distances (smaller xpeak and larger
tpeak). All networks consist of N ¼ 200 units with E ¼ 400 undirected interactions. The simulation parameters are b ¼ �1 ¼ 1 and a=�1 ¼ 1 in all three cases.
The plots shows results for R ¼ 10 different realizations of the network structure where every unit was perturbed once, for a total of 400000 measurements.
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explicit functions of the inverse of the Jacobian matrix that in

turn encodes both the base operating state and the interaction

topology. However, these characteristic quantities are not

intended to predict peak times and amplitudes – and if inter-

preted as such, exhibit large errors. So it still remains unclear

how to explicitly quantify peak times and amplitudes.

Here we connect the two sets of quantifiers and derive

approximate analytical estimators for the absolute peak posi-

tions and heights of the responses in terms of quantifiers based

on expectation values. We employ qualitative approximations

of the response functions mimicking the asymptotic behavior

both for small and large times. The resulting estimators enable

approximate predictions of the peak timings and heights across

network topologies. Interestingly, in the weak coupling regime

(see Supplemental Material), i.e. asymptotically as a=�1 ! 0,
the predictions become identical across all specific approximat-

ing functions tested, suggesting universality. Outside the

asymptotic regime, i.e. for stronger coupling, the adjusted esti-

mators seem to systematically underestimate the peak response

values.

Fig. 6. Accurate estimation of peak values across network topologies with weak coupling. The top row shows examples of the network topologies of (a)
Poisson random networks, (b) Barabasi-Albert scale free random networks and (c) geometrically embedded random networks with periodic boundaries. The mid-
dle row shows the resulting Est xðtpeakÞ� 	

[blue, Eq.(21)] versus the true peak height xpeak, the bottom row shows the corresponding results for Est tpeak
� 	

[blue,
Eq.(20)]. Points on the diagonal indicate perfect agreement of the estimated peak time or height with the actual peak time or height. Both estimators more accu-
rately predict the actual peak values compared to the raw expectation values (red). In both cases the estimators become more accurate for larger distances
(smaller xpeak and larger tpeak). All networks consist of N ¼ 200 units with E ¼ 400 undirected interactions. The simulation parameters are b ¼ �1 ¼ 1 and
a=�1 ¼ 0:1 in all three cases. The estimators are more accurate for this weaker coupling (compared to those in Fig. 5 for a ¼ 1). The plots show results for
R ¼ 10 different realizations of the network structure where every unit was perturbed once, for a total of 400000 measurements.
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Together with the expressions for the characteristic response

measures derived by Wolter et al. in terms of expectation val-

ues [14], these results provide an analytic framework for pre-

dicting the impact of perturbations on any unit in any network

operating close to a stable fixed point in the limit of weak cou-

pling. Our results on deterministic systems are thereby comple-

menting the analyses for specific models of disease spreading

[1]–[4], [6]. They moreover suggest that in the asymptotic

regime of weak coupling, perturbations spread ballistically

through the network, even though the coupling is diffusive.

Further work must show how details of the local network topol-

ogy affect the accuracy of the predictions and how the results

can be extended to allow also accurate predictions for stronger

coupling and at close distances.
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