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ABSTRACT

Vulnerability of networks has so far been quantified mainly for structural properties. In driven systems, however, vulnerability intrinsically
relies on the collective response dynamics. As shown recently, dynamic response patterns emerging in driven oscillator networks and AC
power grid models are highly heterogeneous and nontrivial, depending jointly on the driving frequency, the interaction topology of the
network, and the node or nodes driven. Identifying which nodes are most susceptible to dynamic driving and may thus make the system as a
whole vulnerable to external input signals, however, remains a challenge. Here, we propose an easy-to-compute Dynamic Vulnerability Index
(DVI) for identifying those nodes that exhibit largest amplitude responses to dynamic driving signals with given power spectra and thus are
most vulnerable. The DVI is based on linear response theory, as such generic, and enables robust predictions. It thus shows potential for a
wide range of applications across dynamically driven networks, for instance, for identifying the vulnerable nodes in power grids driven by
fluctuating inputs from renewable energy sources and fluctuating power output to consumers.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5122963

Signal-induced large excursions of the dynamics of networked
systems may pose risks to system functionality. For instance, in
power grids, large frequency excursions from the nominal value
(of 50 Hz or 60 Hz) become more frequent with a larger share of
renewable energy sources, posing serious challenges for grid oper-
ation and control. Because external signals are often stochastic
and a network’s response pattern is dynamic, highly heteroge-
neous, and depends on the network structure and the frequency
statistics of the input signal, it remains an open problem to deter-
mine which nodes are most vulnerable to fluctuating network
inputs. Here, we propose a Dynamic Vulnerability Index (DVI) to
identify those nodes with largest frequency responses to stochas-
tic power fluctuations that drive a network at any unit. The index
takes into account the distributed and time-dependent nature of
the network responses and is computable in a straightforward and
fast way.

I. INTRODUCTION

Oscillatory networks, modeling the underlying mechanisms of
many real-world systems ranging from gene and neural circuits1,2

to AC power grids,3–8 exhibit highly nontrivial responses to exter-

nal driving signals,9–13 due to the complexity in the underlying

topology and the nonlinearity in the coupling function. Recently,
growing attention has been drawn to the topic of dynamically
driven networks in part because of the important application of
the second-order Kuramoto-type oscillator model in power grid
operation and control.12–16 With an increasing share of fluctuat-
ing renewable energy sources integrated in modern power grids,
it is crucial for grid operators to predict the distributed frequency
responses to systematic and stochastic fluctuations and to identify
which units are most susceptible and may thus make the system as a
whole vulnerable to dynamic inputs.
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For the example of power grid models, key aspects of net-
work responses to dynamical perturbations have been uncovered
recently: about the impact of various types of perturbation sig-
nals, including the scaling in the relaxation of power grids
after pulse-like perturbations,15,16 the differential response to static
perturbations,17 the distributed dynamic patterns in response to
dynamic perturbations,12 the fluctuation-induced non-Gaussian
grid frequency distribution,18 and the escape of a system from an
operation state if driven by white noise14 and/or non-Gaussian
noises.19,20 Specifically, the time-averaged nodal deviations from the
network mean response were ranked using a centrality measure
based on the Laplacian spectrum.21 For lossy networks, averaged
nodal sensitivity to fluctuations across networks have been numer-
ically investigated22 and estimated via the nodal variance.23 Yet, it
is still unclear which stochastic signals may cause network-wide
response patterns and how to quickly and precisely identify those
nodes that potentially exhibit most severe responses and thus are
most vulnerable to such perturbations.

The core of the puzzle lies in an intriguing phenomena of
dynamic network resonance,12 which is present in oscillator mod-
els with two (or more) variables per node (such as the second-order
Kuramoto model, an oscillatory power grid model) but not in the
networks of phase oscillators such as in the original Kuramoto
model.9–12 While the network responses for low- and high-frequency
signals are trivial thus fairly predictable—homogeneous responses
for slowly changing signals and localized responses for fast-changing
signals—fluctuations in the resonance frequency regime of a net-
work system induce complex resonance patterns in oscillatory
networks.12 The patterns are jointly determined by the perturba-
tion frequency, the underlying network topology, the initial unper-
turbed network state (base operating state), and the location of the
perturbation and the response of interest. Although the resonant
responses can be deterministically and precisely computed for given
perturbation time series deriving and evaluating a linear response
theory,12 a straightforward, fast, and reliable method for estimat-
ing the resonant response strengths for stochastic signals is still
missing mainly because such signals contain an extended band of
frequencies.

Here, going beyond structural vulnerability in networks, we
propose the Dynamic Vulnerability Index (DVI), a computationally
inexpensive vulnerability measure to assess and to rank the largest
possible resonant response of individual nodes in oscillatory net-
works. The networks are driven by stochastic perturbations contain-
ing a characteristic power spectral density (PSD) function. In power
grid research and beyond, the term network vulnerability is typically
used to describe the impact of purely topological changes on net-
work performance.24–28 The meaning of the vulnerability of a node
was extended to considering the node’s transient response to a pulse-
like perturbation29,30 and recently to the time-averaged response to
stochastic perturbations.21 Here, we propose a Dynamic Vulnerabil-
ity Index (DVI) that expands the definition by considering the global
maximum of a node’s dynamic response to a stochastic input sig-
nal. Employing a linear response theory12 and a frequency-specific
estimate of the resonant response strength, the DVI exhibits high
prediction power and helps in identifying those nodes potentially
respond most strongly to a stochastic resonant perturbation and
thereby posing systemic risks in power grid stability. Specifically,

the DVI identifies the vulnerable nodes at unexpected locations in
the network not foreseeable from the topology alone.

II. RESONANT NETWORK RESPONSE PATTERNS

Consider a network of N second-order Kuramoto-type oscilla-
tors with dynamics governed by

θ̈i = Pi − αθ̇i +

N
∑

j=1

Kij sin(θj − θi) + δikD(t) (1)

and driven by an external fluctuating signal δikD(t) only present
at node k. Here, θi and Pi denote the rotation angle and the natu-
ral acceleration of the oscillator i (proportional to the power input
or output at i), α > 0 parametrizes the damping coefficient, and
Kij > 0 denotes the coupling strength of the node pair (i, j). The
model is equivalent to a coarse-grained model of AC power grids12

enabling effective inertia for sub-grids, where sub-grids are modeled
as oscillatory nodes with fluctuating power inputs from renewable
sources. It describes the collective dynamics of N sub-grids at a
set grid frequency of �0 = 2π × 50 Hz (or 60 Hz in the USA and
parts of Japan) in the normal operation state. The effective damp-
ing coefficient α characterizes the effective windage losses during
the rotation of the generators and turbines in the sub-grids. In this
context, θi represents the center-of-inertia angle deviation of the
sub-grid i to the reference frame rotating at �0; thus, θ̇i represents
the deviation of the grid frequency at the sub-grid i to its nominal
value �0. Pi is related to the power generated (P+ > 0) or consumed
(P− < 0) in the sub-grid i and Kij the line capacity of the power
transmission between the sub-grid i and j. The driving signal δikD(t)
is a fluctuating time series additive to the average power generation
or consumption at the sub-grid k. For the purpose of the modeling
setup, each sub-grid is presented as one node of a graph.

How does such a network respond to dynamic input signals
(Fig. 1)? Close to a normal operation state of the power grid, i.e.,
a stable fixed point θ

∗ :=
(

θ∗
1 , . . . , θ∗

N

)

of the oscillatory network,
the collective response 2(t) := θ(t) − θ

∗ to a perturbation vector

D(k)(t) defined via its components D(k)
i (t) := δikD(t) is accurately

given by a linear response theory,12

2̈
(k)

= −α2̇
(k)

− L2
(k) + D(k), (2)

where L with Lij := Kij cos(θ∗
j − θ∗

i ) for i 6= j and Lii = −
∑

j6=i Lij

is a weighted graph Laplacian. The linear network response is ana-
lytically solvable by projecting it to the orthogonal eigenspaces of
the Laplacian matrix.12 For a perturbation D(t) = ε(ω)eı[ωt+ϕ(ω)] at

the unit k of a given frequency, the frequency response 2̇
(k)
i at the

unit i, i.e., the response in unit i’s angular velocity θ̇i, approaches an
invariant (steady) state

2̇
(k)
i (ω, t) = ε(ω)eı[ωt+ϕ(ω)]

N−1
∑

`=0

ıωv[`]
k v[`]

i

−ω2 + ıαω + λ[`]
(3)

as t → ∞ with the same frequency ω as the driving signal but
with a node-specific magnitude and a phase shift. In the context
of power grid dynamics, Eq. (3) gives the steady-state response in
the electric AC frequency at the node (sub-grid) i. Here, λ[`] and
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FIG. 1. Complex network resonance
patterns and large amplitude responses.
(a)–(c) Distinct network resonance
patterns for three driving frequen-
cies. Each node is color-coded by

the relative response strength A
∗(k)

i

:= |2̇
(k)

i |/ limω→0 |2̇
(k)

i |, and the driven
node is marked with a black square. In
simulation, we use per-unit parameters

α = �0D̄/2H̄, P+ = �0/2H̄, P−

= −P+/3, and Kij = 2P+ with the nor-

malized damping coefficient D̄ = 0.02 s2

and the aggregated inertia constant

H̄ = 4 s. The network topology is created
by a random growth model of power grid
networks.31 (d) The resonant response
patterns varies with the driving frequency
in the resonance regime (shaded
orange). The relative response strength
of an individual node i is color-coded by
its graph-theoretic distance d(k, i) (also
abbreviated as “distance” in this work)
to the driven node k, which is defined
as the number of edges in a shortest
path between a node pair. Gray vertical
lines indicate the N − 1 resonance
frequencies ω

[`]
res.

v[`]
i denote, respectively, the `th eigenvalue and the ith component

of the corresponding eigenvector. The eigenvalues are indexed as
0 = λ[0] ≤ · · · ≤ λ[N−1]. When one of the eigenmodes is excited, that
is, when the perturbation frequency ω maximizes the contribution
of an eigenmode in Eq. (3) with an eigenfrequency,

ω = ω[`]
res :=

√

λ[`] −
α2

4
, (4)

the network response is dominated by the resonant eigenmode

characterized by an overlap factor v[`]
k v[`]

i , constituting a nontrivial,
highly heterogeneous dynamic pattern (Fig. 1).

We emphasize that network resonances emerge not only at a
single perturbation frequency, but at all N − 1 frequencies in a wide
frequency range,

ω ∈ Ires :=

[
√

λ[1] −
α2

4
,

√

λ[N−1] −
α2

4

]

. (5)

This interval marks the resonance regime, with responses substan-
tially increased due to resonances still extending to outside the
interval. Extraordinarily high strengths of the frequency response
up to an order-of-magnitude (e.g., 12 times) larger than the homo-
geneous response strength in the low frequency limit12 may appear
across the network [Fig. 1(d)]. Furthermore, the resonant response
pattern sharply depends on the driving frequency. In an exemplary
network, the response pattern appears to be distinctly different for

three frequencies with no more than 1 Hz apart from each other
[Figs. 1(a) and 1(c)]. Besides the heterogeneity in response ampli-
tudes, each node’s response additionally exhibits a heterogeneous
phase delay toward the perturbation signal due to the characteristic
arguments of the complex responses (3).

III. INDEXING RESONANT RESPONSES

Even perturbed only by a single-frequency resonant signal,
the network already exhibits complex response patterns in terms
of the strength and the phase delay of the sinusoidal response (3).
In reality, power grids are constantly exposed to noisy fluctuations
in renewable power generation and in the power consumption of
households and industry, which consist of Fourier components with
a wide range of frequencies in the resonance regime, stochastic mag-
nitudes, and random phases. For a given noisy perturbation time
series, the network response time series is computable by summing
up the linear response to each frequency (3). However, the influ-
ence of future remains unknown. Making general predictions for
a network’s complex resonant response to noisy fluctuations and,
particularly, identifying the most susceptible nodes still remains a
challenge.

We propose an index of the vulnerability of individual nodes
in a network under resonant perturbations, the Dynamic Vulnera-
bility Index (DVI), which helps in ranking the maximum resonant
response magnitude for perturbations with a characteristic PSD
S(ω). Measurements of wind and solar power systems indicate that
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both of the strongly fluctuating renewable power sources are char-
acterized by a power-law PSD with the Kolmogorov exponent −5/3;
see Ref. 32. The DVI thus helps in identifying the sub-grids in a
power grid network that are most susceptible to resonant drivings
from a renewable power input or consumer demand fluctuations. A
characteristic PSD allows for estimating Fourier components’ ampli-

tudes through the relation ε(ω) ∝ S(ω)
1
2 . We thus define the DVI

for the node i given a noisy perturbation with the PSD S(ω) driving
node k as

DVI(k)i :=

∫

Ires

S(ω)
1
2

∣

∣

∣

∣

∣

N−1
∑

`=0

ıωv[`]
k v[`]

i

−ω2 + ıαω + λ[`]

∣

∣

∣

∣

∣

dω

∝

∫

Ires

∣

∣

∣
2̇

(k)
i (ω, t)

∣

∣

∣
dω. (6)

Essentially, the DVI is an integral of the (time-independent)

response strength
∣

∣

∣
2̇

(k)
i (ω, t)

∣

∣

∣
for the driving frequency ω over sig-

nal’s all Fourier components ω in the resonance regime Ires ⊂ R.
The all-time maximum of a node’s resonant response magnitude in
a time interval of length T is always no larger than the integral of the

response strength
∣

∣

∣
2̇

(k)
i (ω, t)

∣

∣

∣
for the frequency ω over Ires, i.e.,

max
t∈[0,T]

∣

∣

∣

∣

∫

Ires

2̇
(k)
i (ω, t)dω

∣

∣

∣

∣

≤

∫

Ires

∣

∣

∣
2̇

(k)
i (ω, t)

∣

∣

∣
dω. (7)

The idea of the DVI is based on the assumption that a node’s all-
time maximal response33 [lhs of Eq. (7)] approaches the integral of
the resonant response strength [rhs of Eq. (7)] for a sufficiently long
time T, which we will examine numerically below. The integral in
the definition of DVI [Eq. (6)] can be easily computed in a numerical
way so that the relative value of DVI reduces to a discrete sum over
Fourier frequency components ω in Ires.

Note that the PSD S(ω) gives only the scaling information of
ε(ω); therefore, the relative value of DVI among all nodes within
a network seems more relevant than its absolute value. The rank-
ing of DVI thus provides information about which nodes are most
susceptible rather than predicting the actual response magnitudes.
Evaluations of direct numerical simulations show that the DVI rank-
ing is capable of predicting those dynamically vulnerable nodes that
are unexpected by intuition or naïve inferences. For instance, in a
100 s simulation (Fig. 2), the ranking of the numerically determined
all-time maximal frequency response appears to be highly similar to
the ranking given by DVI. Remarkably, it gives warnings that some

FIG. 2. The ranking of DVI well predicts the ranking of maximal resonant responses. (a) and (b) The grid frequency responses of the British high-voltage power grid to a
resonant driving signal with (c) PSD of the Kolmogorov exponent −5/3. (c) The signal is extracted from a colored noise by filtering the frequencies (black dots) and keeping

only the ones (orange dots) in the resonance regime (shaded in orange). (d) The color-coded actual ranking σ(i) of the maximal frequency response max
t∈[0,T ]

∣

∣

∣
2̇

(k)

i (t)
∣

∣

∣
in the

simulation of T = 100 s. (e) and (f) Two predicted rankings: (e) σ̂DVI(i) given by DVI (6) and (f) σ̂d(i) by a (graph-theoretic) distance-based measure, respectively. The ranking

σ̂d(i) is tied since multiple nodes share the same graph-theoretic distance and thus is computed using a method by Fagin et al.
34 A black square marks the perturbed node,

and dotted circles highlight the vulnerable nodes, which are well predicted by DVI but missed by the distance-based measure. The respective prediction error E defined in
Eq. (8) is also shown. (g)–(j) The correlation between the true ranking and the two predicted rankings (g) and (i) and the correlation between the value of the maximal
responses and the two vulnerability measures (h) and (j). A linear fit (through the origin) and the corresponding Pearson’s correlation coefficient r is shown in (g)–(i), while
the correlation in (j) is clearly nonlinear. Except the topology, the network settings are the same as in Fig. 1.
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particular nodes (e.g., the ones marked in dotted circles) would be
especially vulnerable to resonant perturbations. Those nodes would
be missed by prediction approaches based solely on topology, such
as those assuming that nodes at a smaller graph-theoretic distance to
the fluctuation are more strongly effected [compare Figs. 2(d)–2(f)].
Particularly, in power systems frequency regulation devices such
as power system stabilizers (PSSs) may extenuate frequency fluc-
tuations in a frequency range IPSS that (partially) overlaps with the
resonance frequency range Ires. In such settings where some fre-
quencies are missing or strongly reduced in amplitudes, DVI still
works in principle because it relies on those frequencies ω present
that are largest in amplitudes. Based on theoretical considerations,
to the first approximation, the contributions of the respective fre-
quency components should then be excluded in the computation of
DVI; i.e., the integration in Eq. (6) should be performed over the
interval Ires \ IPSS instead of Ires. Numerical simulations confirmed
that the adapted DVI still provides good estimates for vulnerable
nodes in the presence of frequency regulation mechanisms; these
results are qualitatively the same as those presented in Fig. 2 and
thus not shown here. Under the same network settings and driving
signals as in Fig. 2, the prediction error for estimating the all-time
maximum of the regulated response, with frequency components
in IPSS = (0.1 Hz, 1 Hz) filtered out, is 0.33, close to the error 0.34
without any frequency regulation [Fig. 2(e)]. The Pearson correla-
tion coefficient 0.850 between the DVI ranking and the true ranking
and the correlation 0.994 between the DVI value and the true maxi-
mal response value are qualitatively the same (and even higher) than
the values displayed in Figs. 2(g) and 2(h).

We further quantitatively investigate the prediction perfor-
mance of DVI in terms of its robustness over time and over the
stochastic feature of the fluctuation. We measure DVI’s prediction
error with a normalized Spearman’s footrule distance35 between the
predicted ranking σ̂DVI(i) and the actual ranking σ(i),

E :=
1

Erand

N
∑

i=1

∣

∣σ̂DVI(i) − σ(i)
∣

∣ . (8)

The Spearman’s footrule distance measures the disagreement of two
rankings of N elements, σ1 and σ2, by taking the sum of the absolute

values of the difference between them
∑N

i=1 |σ1(i) − σ2(i)|. The pre-
diction error E here is further normalized by the expectation value
of the Spearman’s footrule distance Erand = N2/3 between two ran-
dom rankings chosen independently and uniformly in the set SN of
permutations of N elements; see Ref. 35. Numerical results show
that the ranking σ of the maximum response from direct simula-
tion converges fast to the a priori DVI ranking σ̂DVI [Fig. 3(a)]. For a
100 s perturbation time series, we measure the true ranking σ every
0.1 s and compute the footrule distance E. For a sample power grid
with the eigenfrequencies around 1 Hz (Ires = [0.32 Hz, 3.74 Hz]),
the prediction error drops about 80% in the first 10 s and continues
to decrease slowly. At T = 100 s, the prediction error drops to about
15% of the random guess error level and far below (< 40%) the error
of the predictions based on the graph-theoretic distance. The DVI is
highly correlated to the maximal frequency responses with Pearson’s
correlation coefficient r larger than 0.985 [Figs. 3(c)–3(e)]. Further-
more, we find the prediction performance of DVI to be quite robust
over time and for different types of colored noise with the power-law

FIG. 3. Fast-converging, robustly high prediction performance of DVI ranking. (a)
The prediction error of DVI drops sharply at first, decreases over time, and rests
at a level about 85% lower than the error of random guesses. The Gaussian error
distribution of random guesses35 is indicated by various shades of gray: the black
line for the expectation value of E for random guesses, areas colored with differ-
ent shades of gray for intervals 1 ± ρ, 1 ± 2ρ, and 1 ± 3ρ, respectively, with ρ

being the ratio between the standard deviation and the expectation value of E for
random guesses. The lines with a lower saturation of color indicate a much higher
prediction error for the distance-based measure. (b) A snapshot of the predic-
tion error’s dependence on signal’s PSD exponent b at the end of the simulation
T = 100 s. The prediction error increases slightly for larger PSD exponents of
the driving signal. (c)–(e) At T = 100 s, the DVI exhibits a high correlation with
the maximal frequency response for the wide range of tested PSD exponents
b ∈ {0, 1, 2}. In (a)–(e), the lines and disks are color-coded by the signal’s PSD
exponent b; see (b) for a correspondence. The network settings are the same as
in Fig. 1.

exponent b ∈ [0, 2], from white noise to brown noise. The predic-
tion error remains at almost the same level and shows only a mild
increase with growing b [Fig. 3(b)].

IV. CONCLUSION

We presented a measure of dynamic node vulnerability (DVI)
to predict the most resonant nodes in stochastically driven oscilla-
tor networks and, specifically, AC power grid models. Based on a
linear response theory of the network’s resonance patterns for a sin-
gle frequency, we propose to estimate the susceptibility of a node
to stochastic driving signals by (i) estimating the driving signal’s
Fourier spectrum by its PSD characteristics and (ii) accumulating
the nodal response amplitudes to each Fourier components. Numer-
ical results indicate strong prediction power of the proposed DVI in
identifying the most resonant nodes. The true ranking of a maxi-
mum response from direct simulation converges fast to the ranking
prediction given by DVI, thus revealing the most vulnerable nodes.
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The prediction performance is robust not only over time, but also for
various types of colored noise sources. For all tested settings, rang-
ing from white noise to brown noise with a PSD exponent b ∈ [0, 2],
the prediction error stays at a low level, and the DVI highly corre-
lates with the true response, with a Pearson’s correlation coefficient
larger than 0.985. The proposed DVI largely outperforms an intu-
itive measure based on the graph-theoretic distance with less than
half of the prediction error.

Given the position and the characteristic PSD of the driving
signal, for instance, the location of a wind farm in a power grid
network, the ranking of the DVI obtained from Eq. (6) may help
in identifying which stations in the power grid would particularly
be influenced by the resonant signals carried by the fluctuating
wind power input, allowing precautionary measures to be taken (see
Fig. 2 for an example of the British grid topology). The DVI is also
adaptable to power systems with frequency regulation mechanisms
providing accurate estimates of dynamically vulnerable nodes. As
the method is robust and computationally fast, it might also be appli-
cable ad hoc if the network changes after failures or other unforeseen
events such as load shedding.

Furthermore, the DVI may support optimizing future power
grid planning. For instance, new stations or new lines should be built
in a way that important units in the network would not suffer from
severe resonant disturbances in the altered network topology.

Taken together, the proposed dynamic vulnerability index pro-
vides a powerful tool to rank the nodal resonance level in networks
of dynamical units. Whereas the presentation above is focused on
the second-order Kuramoto model to overcome previous analytic
limitations, the index is readily generalized, both to phase oscillator
networks (with single variable nodes) and more complex systems
such as networks of the third order model of power grids and more
generally, networks of oscillatory and non-oscillatory dynamic units.
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